
Input Validation

Eoin Keary

CTO BCC Risk Advisory

www.bccriskadvisory.com
www.edgescan.com

http://www.bccriskadvisory.com/
http://www.edgescan.com/

Where are we going?

Don’t ever trust user input

Where possible, use whitelist validation

Perform input validation at earliest possible stage

Layers of defense

Use in-built validator routines

Data Validation

Input that is not directly entered by the user is typically less prone to
validation

Attacks discussed in this section apply to external input from any client-side
source

Standard form input control

Read-only HTML form controls (drop down lists, radio buttons,
hidden fields, etc)

HTTP Cookie Values

HTTP Headers

Embedded URL parameters (e.g., in the GET request)

Data Validation

Known Bad

Known Good

Exact
Match

 Data Validation is
typically done using
one of three basic
approaches

 All input must be properly
validated on the server
(not the client) to ensure
that malicious data is not
accepted and processed
by the application

Data is validated against a list of explicit known values

Application footprint or “application attack surface” defined

Provides the strongest level of protection against malicious data

Often not feasible when a large number of possible good values are
expected

May require code modification any time input values are changed or
updated

Exact Match Validation

Example: Acceptable input is yes or no
if ($input eq“yes” or $input eq “no”)

Exact Match Validation Example

Validates the variable gender against 2 known values (.NET)

static bool validateGender(String gender)

 {

 if (gender.equals(“Female“))

 return true;

 else if (gender.equals(“Male“))

 return true;

 else

 return false; //attack SOUND THE ALARM! BEEP BEEP!

}

Exact Match Validation Example

Validates the variable gender against 2 known values (Java)

static boolean validateGender (String
gender) {

if (gender.equals (“Female“))

 return true;

else if (gender.equals (“Male“))

 return true;

else

 return false; //attack

}

Known Good Validation

Often called "white list" validation

Data is validated against a list of allowable characters and patterns

Typically implemented using regular expressions to match known good data patterns

Data type cast/convert functions can be used to verify data conforms to a certain
data type (i.e. Int32)

Expected input character values must be clearly defined for each input variable

Care must be taken if complex regular expressions are used

A common mistake is to forget to anchor the expression with ^ and $

Regular Expression Syntax

Symbol Match

^ Beginning of input string

$ End of input string

* Zero or more occurrences of previous character, short for {0,}

+ One or more occurrences of previous character, short for {1,}

? Zero or one occurrences of previous character, short for {0,1}

{n,m} At least n and at most m occurrences of previous character

. Any single character, except ‘\n’

[xyz] A character set (i.e. any one of the enclosed characters)

[^xyz] A negative character set (i.e. any character except the enclosed)

[a-z] A range of characters

Regular Expression Syntax - shortcuts

Symbol Match

\d Any digit, short for [0-9]

\D A non-digit, short for [^0-9]

\s A whitespace character, short for [\t\n\x0b\r\f]

\S A non-whitespace character, for short for [^\s]

\w A word character, short for [a-zA-Z_0-9]

\W A non-word character [^\w]

\S+ Several non-whitespace characters

Example 1
Validating SSN entry

if ($input=~/^[0-9]{9}$/)

Example 2
Validating entry of a last name

if ($input=~/^[A-Za-z][-.'0-9A-Za-z]{1,256}$/)

Example 3
Validating SSN entry (Short cut)

if ($input=~/^\d{9}$/)

Examples 123-56-3454

Regular Expressions - Templates
Field Expression Format Samples Description

Name ^[a-zA-Z-'\s]{1,40}$ John Doe Validates a name. Allows up to 40 uppercase and lowercase characters and a few special
characters that are common to some names. You can modify this list.

Social Security
Number

^\d{3}-\d{2}-\d{4}$ 111-11-1111 Validates the format, type, and length of the supplied input field. The input must consist of 3
numeric characters followed by a dash, then 2 numeric characters followed by a dash, and
then 4 numeric characters.

Phone Number ^[01]?[- .]?(\([2-9]\d{2}\)|[2-
9]\d{2})[- .]?\d{3}[- .]?\d{4}$

(425) 555-0123 Validates a U.S. phone number. It must consist of 3 numeric characters, optionally enclosed in
parentheses, followed by a set of 3 numeric characters and then a set of 4 numeric
characters.

E-mail ^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-
]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-
]+)*$

someone@exampl
e.com

Validates an e-mail address. (per the HTML5 specification
http://www.w3.org/TR/html5/forms.html#valid-e-mail-address).

URL ^(ht|f)tp(s?)\:\/\/[0-9a-zA-Z]([-
.\w]*[0-9a-zA-Z])*(:(0-
9)*)*(\/?)([a-zA-Z0-9\-
\.\?\,\'\/\\\+&%\$#_]*)?$

http://www.micros
oft.com

Validates a URL

ZIP Code ^(\d{5}-\d{4}|\d{5}|\d{9})$|^([a-
zA-Z]\d[a-zA-Z] \d[a-zA-Z]\d)$

12345 Validates a U.S. ZIP Code. The code must consist of 5 or 9 numeric characters.

Password (?!^[0-9]*$)(?!^[a-zA-Z]*$)^([a-
zA-Z0-9]{8,10})$

Validates a strong password. It must be between 8 and 10 characters, contain at least one
digit and one alphabetic character, and must not contain special characters.

Non- negative
integer

^\d+$ 0 Validates that the field contains an integer greater than zero.

Currency (non-
negative)

^\d+(\.\d\d)?$ 1 Validates a positive currency amount. If there is a decimal point, it requires 2 numeric
characters after the decimal point. For example, 3.00 is valid but 3.1 is not.

Currency
(positive or
negative)

^(-)?\d+(\.\d\d)?$ 1.2 Validates for a positive or negative currency amount. If there is a decimal point, it requires 2
numeric characters after the decimal point.

Regular Expressions

Regular Expressions is a term used to refer to a pattern-matching technology
for processing text

Although there is no standards body governing the regular expression
language, Perl 5, by virtue of its popularity, has set the standard for regular
expression syntax

A Regular Expression itself is a string that represents a pattern, encoded
using the regular expression language and syntax

Regular Expression - Zend

$validator = new Zend_Validate_Regex(array('pattern' => '/^Test/');

$validator->isValid("Test"); // returns true

$validator->isValid("Testing"); // returns true

$validator->isValid("Pest"); // returns false

http://www.php.net/array

Data Validation Techniques

Validates against a regular expression representing the proper expected data format
(10 alphanumeric characters) (.NET)

using System.Text.RegularExpressions;

static bool validateUserFormat(String userName) {

 bool isValid = false; //Fail by default

 // Verify that the UserName is 1-10 character alphanumeric

 isValid = Regex.IsMatch(userName, @"^[A-Za-z0-9]{10}$");

 return isValid;

}

Regular Expressions - assertions

Assert a string is 8 or more characters:
(?=.{8,})

Assert a string contains at least 1 lowercase letter (zero or more characters followed by
a lowercase character):
(?=.*[a-z])

Assert a string contains at least 1 uppercase letter (zero or more characters followed by
an uppercase character):
(?=.*[A-Z])

Assert a string contains at least 1 digit:
(?=.*[\d])

So if you want to match a string at least 6 characters long, with at least one lower case
and at least one uppercase letter you could use something like:
^.*(?=.{6,})(?=.*[a-z])(?=.*[A-Z]).*$

Known Good Validation Example

Validates against a regular expression representing the proper expected data
format (10 alphanumeric characters) (Java)

import java.util.regex.*;

static boolean validateUserFormat(String userName){

 boolean isValid = false; //Fail by default

 try{

 // Verify that the UserName is 10 character alphanumeric

 if (Pattern.matches(“^[A-Za-z0-9]{10}$”, userName))

 isValid=true;

 } catch(PatternSyntaxException e) {

 System.out.println(e.getDescription());

 }

 return isValid;

}

Known Good Example

$validator = new Zend_Validate_Alnum();

if ($validator->isValid('Abcd12')) {

 // value contains only allowed chars

} else {

 // false

}

Known Good Example - Chains

// Create a validator chain and add validators to it

$validatorChain = new Zend_Validate();

$validatorChain->addValidator(

new Zend_Validate_StringLength(array('min' => 6, 'max' => 12)))

 ->addValidator(new Zend_Validate_Alnum());

// Validate the username

 if ($validatorChain->isValid($username)) {

 // username passed validation

 } else {

 // username failed validation; print reasons or whatever…..

 foreach ($validatorChain->getMessages() as $message) {

 echo "$message\n";

 }

http://www.php.net/array

Often called "BlackList" validation

Data is validated against a list of characters that are deemed to be dangerous
or unacceptable

Useful for preventing specific characters from being accepted by the
application

Provides the weakest method of validation against malicious data

Susceptible to bypass using various forms of character encoding

Known Bad Validation

Example: Validating entry into generic text field
if ($input !~/[\r\t\n><();\\+&%’”*\|]/)

Known Bad Validation Example

Validates against a regular expression of known bad input strings (.Net)

using System.Text.RegularExpressions;

static boolean checkMessage(string messageText){

 bool isValid = false; //Fail by default

 // Verify input doesn’t contain any < , >

 isValid = !Regex.IsMatch(messageText, @"[><]");

 return isValid;

}

Known Bad Validation Example

Validates against a regular expression of known bad input strings (Java)

import java.util.regex.*;

static boolean checkMessage (string messageText) {

 boolean isValid = false; //Fail by default

 try {

 Pattern P = Pattern.compile (“<|>”,
 Pattern.CASE_INSENSITIVE | Pattern.MULTILINE);

 Matcher M = p.matcher(messageText);

 if (!M.find())

 isValid = true;

 } catch(Exception e) {

 System.out.println(e.toString());

 }

 return isValid;

}

Bounds Checking

All external input must
also be properly validated
to ensure that excessively
large input is rejected

Length checking: A maximum length check should be
performed on all incoming application data.

Careful about name length! Lokelani

Keihanaikukauakahihuliheekahaunaele is a real

person!

Input that exceeds the
appropriate length or size
limits must be rejected
and not processed by the
application

Size checking: A maximum size check should be
performed on all incoming data files

The following code reads a String from a file.

Because it uses the readLine() method, it will read an unbounded amount of input until
a <newline> (\n) charter is read.

 InputStream Input = inputfileFile.getInputStream(Entry);

 Reader inpReader = new InputStreamReader(Input);

 BufferedReader br = new BufferedReader(inpReader);

 String line = br.readLine();

This could be taken advantage of and cause an OutOfMemoryException or to consume a
large amount of memory which shall affect performance and initiate costly garbage
collection routines.

Bounds Checking – Example

Unbounded Reading of a file

Bounds checking

$validator = new Zend_Validate_StringLength(array('max' => 6));

$validator->isValid("Test"); // returns true

$validator->isValid("Testing"); // returns false

http://www.php.net/array

Bounds checking – File size

$upload = new Zend_File_Transfer();

// Limit the size of all files to be uploaded to 40000 bytes

$upload->addValidator('FilesSize', false, 40000);

// Limit the size of all files to be uploaded to maximum 4MB and mimimum 10kB

$upload->addValidator('FilesSize', false, array('min' => '10kB', 'max' => '4MB'));

http://www.php.net/array

.NET Validator Controls:

RequiredFieldValidator, CompareValidator, RangeValidator,
RegularExpressionValidator, CustomValidator, ValidateRequest

Jakarta Commons Validator:

required, mask, range, maxLength, minLength, datatype, date,
creditCard, email, regularExpression

Native Validation Controls

Many development platforms have native validator controls, such as Jakarta and .NET

Escaping vs. Rejecting

When validating data, one can either reject data failing to meet validation
requirements or attempt to “clean” or escape dangerous characters

Failed validation attempts should always reject the data to minimise the risk
that sanitisation routines will be ineffective or can be bypassed

Error messages displayed when rejecting data should specify the proper
format for the user to enter appropriate data

Error messages should not redisplay the input the user has entered

The Problem with Escaping
--- Snip ---

 page_template = request.queryString("page")

 replace(page_template , "/", "\")

 replace(page_template, "..\", "")

 getFile(page_template)

--- End Snip ---

http://www.example.com/content/default.jsp?page=info.htm

 Page_template = info.htm <- First Pass

 Page_template = info.htm <- Second Pass

http://www.example.com/content/default.jsp?page=../web.xml

 Page_template = ..\ web.xml <- First Pass

 Page_template = web.xml <- Second Pass

http://www.example.com/content/default.jsp?page=....//web.xml

 Page_template =\\web.xml <- First Pass

 Page_template = ..\web.xml <- Second Pass

http://www.example.com/content/default.jsp?page=info.htm
http://www.example.com/content/default.jsp?page=info.htm
http://www.example.com/content/default.jsp?page=../web.xml
http://www.example.com/content/default.jsp?page=....//web.xml

Input Based Attacks
Malicious user input can be used to launch a variety of attacks against an application. These
attacks include, but are not limited to:

Parameter
Manipulation

 Cookie poisoning

 Hidden field manipulation

Content
injection

 SQL

 HTTP Response Splitting

 Operating system calls

 Command insertion

 XPath

Cross site
scripting

 …

Buffer
overflows

 Format string attacks

Parameter Manipulation

Applications typically pass parameters that determine what the user can do
or see

Unauthorised access to application data can be obtained by manipulating
parameter values, if record-level authorisation checks are not performed
within the application code

Many applications tend to pass sensitive parameters back and forth rather
than using server session variables to store the information

Very common to see this in

HTTP cookies

“hidden” HTML form fields

Parameter Manipulation

Database record index numbers are often passed as page parameters to
view a specific record

If there is a relatively small range of possible index values, sequential
parameter values can by cycled to view other records

Even-non sequential indexing can be attacked within a small range of
potential values

Manipulating parameter values can be trivial when other obvious valid
Values exist:

Username=joe (change to username=mary)

Privilege=user (change to privilege=admin)

Price=100.00 (change to price=1.00)

Testing for Parameter Manipulation

Identify areas in the application where records appear to be displayed based
on input parameters

Attempt to access records using other known valid parameter values

For parameter values that seem to fall within a variable range, cycle through
the range to search for other valid records

Identify all data being passed in hidden fields. Attempt to determine:

What the data is being used for

Whether use of a hidden field seems appropriate

Defenses Against Parameter
Manipulation

Data that should not be altered should never be passed to the client

Always perform validation on the server

Use the most restrictive input validation method possible

Use Exact Match Validation to verify that parameters values are
appropriate for the specific transaction or user’s permission level

In situations where a query or hash table lookup is required, Known Good
Validation should be used to validate the parameter before performing
the lookup

Retrieve the information from the client once, validate it and keep it on the
server associated with that user’s session

Summary

Don’t ever trust user input

Where possible, use whitelist validation

Perform input validation at earliest possible stage

Layers of defense

Use in-built validator routines

