
HTTP BASICS

WHERE ARE WE GOING?

HTTP Basics

HTTP Request Methods

HTTP Security Response Headers

Sensitive Data In Transit

Intercepting Proxy

Don’t Trust The HTTP Request!

WEB APPLICATION BEHAVIOUR

 HTTP is stateless. Requests and responses between browsers and servers have
no shared memory. Application layer sessions are needed to track state.

 Dynamic Scripting can occur on Server-Side (e.g. RoR, Django, ASP.NET, JSP,
Express, etc) or on Client-Side (Javascript, Flash, Applets).

 A web server or an application server can deliver HTML to be directly rendered
by the web browser. Or, the server might deliver data as JSON or XML to be
processed by a Client-Side application in the browser.

 Requests for data such as images, scripts, and stylesheets are typically retrieved
using HTTP GET. Requests from HTML forms typically submit data using HTTP
POST. AJAX requests can additionally submit HTTP requests of types PUT,
PATCH, and DELETE.

WHAT ARE HTTP HEADERS?

HTTP headers are components of the message header of HTTP
Requests and Responses.

HTTP headers are used to define meta-information for an HTTP
transaction.

HTTP headers are colon-separated name-value pairs in clear-text
string format, terminated by a carriage return (\r) and line feed
(\n) character sequence.

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

EXAMPLES OF HTTP REQUEST HEADERS

Authorization:

 Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Accept:

 text/plain

Content-Type:

 application/x-www-form-urlencoded

User-Agent:

 Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9;

rv:30.0) Gecko/20100101 Firefox/30.0

VALIDATING HTTP REQUEST HEADERS

 Are the headers themselves known to IANA?

 Are the number of headers received appropriate to the application context?

 Do each of the headers come with a pre-determined regular expression or
equivalent for validation?

What headers are usually seen in context with other headers?

 How do I detect missing headers?

 Some headers occur in context of the application and are not global. For example, is
a cookie scoped to a domain?

 Some headers have time components to them such as expires. Is the header
contextually validated by date checks?

Official standard on HTTP Request Headers

https://www.iana.org/assignments/message-headers/message-headers.xhtml

HTTP REQUEST: GET VS POST

GET https://example.com/search.jsp?name=foo HTTP/1.0\r\n

User-Agent: Mozilla/4.0\r\n

Host: example.com\r\n

Cookie: SESSIONID=2KDSU72H9GSA289\r\n

\r\n

HTTP GET Request

POST https://example.com/search.jsp?data=jim HTTP/1.0\r\n

User-Agent: Mozilla/4.0\r\n

Host: example.com\r\n

Content-Length: 16\r\n

Cookie: SESSIONID=2KDSU72H9GSA289\r\n

\r\n

name=blah&type=1

\r\n

HTTP POST Request

TRIGGERING AN HTTP(S) GET

Typing into a URL bar

Bookmark selection

 tag

Loading a JS or CSS file

Loading a Webfont

HTML Form submission method="GET"

jQuery.get() http://api.jquery.com/jQuery.get/

HTTP GET REQUEST: PLAINTEXT IMAGE

GET /personal/dancing/naked/inebriated/kauaifun.jpg HTTP/1.1\r\n

Host: images.manico.net\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:30.0)

Gecko/20100101 Firefox/30.0\r\n

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n

Accept-Language: en-US,en;q=0.5\r\n

Accept-Encoding: gzip, deflate\r\n

DNT: 1\r\n

Connection: keep-alive\r\n

\r\n

HTTP GET REQUEST:
INSECURE FORM SUBMISSION

GET

http://example.com/search?form_name=home&title=security&database=cli

ents HTTP/1.1\r\n

Host: example.com\r\n

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7 (.NET CLR 3.5.30729)\r\n

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n

Keep-Alive: 300\r\n

Proxy-Connection: keep-alive\r\n

Referer: http://company.com?username=Jim&pass=rp2h6jibalice\r\n

Cookie: JSESSIONID=4d9jjtqsr5rba.alice; AxData=; Axxd=clients\r\n

\r\n

HTTP GET SHOULD BE BORING
Most web frameworks intentionally do not provide CSRF

protection for GET requests

A GET request should not produce side effects. It should be
"Nullipotent".

A GET request should only be used for data retrieval

A GET request should NEVER be used for:

• Logging out a user

• Logging in a user

• Deleting a resource

• Modifying a resource

• Creating a resource

• Sending an email

HTTP GET PARAMETER LEAKAGE

Bookmarks

Browser History

Proxy Server Logs

Web Server Logs

Referrer Request Headers

TRIGGERING AN HTTP/S POST
HTML Form POST Submission

jQuery.post() http://api.jquery.com/jQuery.post/

<form

 action="https://acme-bank.example/payment"

 method="POST"

 id="payment-form">

$.post(

 "https://acme-bank.example/payment",

 function () {

 $(".result").html("Payment was successful");

 }

);

HTTP POST REQUEST
POST https://login.example.com:443/login.php?loginfail=3 HTTP/1.1\r\n

Host: login.example.com\r\n

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7 (.NET CLR 3.5.30729)\r\n

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n

Keep-Alive: 300\r\n

Connection: keep-alive\r\n

Referer: https://www.example.com/\r\n

Cookie: JSessionID=1263464364617-95d75464239e7\r\n

Content-Type: application/x-www-form-urlencoded\r\n

Content-length: 224\r\n

\r\n

locale=en_US&email=joe@example.com&pass=letmein123!!Let

\r\n

HTTP PUT REQUEST

$.ajax(

 "https://contact-manager.example/contacts/1234",

 dataType: "json",

 type: "PUT",

 data: {

 name: "John Doe",

 email: "john.doe@example.com"

 }

);

 An HTTP PUT request is used to replace a resource, or to create a new

resource where the identifier of the resource is known.

 The same security precautions that apply to an HTTP POST request should

also apply to a PUT request.

 Never send sensitive data in the query string of an HTTP PUT request

HTTP PATCH REQUEST

$.ajax(

 "https://contact-manager.example/contacts/1234",

 dataType: "json",

 type: "PATCH",

 data: {

 email: "john.doe@example.com"

 }

);

 An HTTP PATCH request is used to apply partial modifications to a

resource.

 The same security precautions that apply to an HTTP POST request should

also apply to a HTTP PATCH request.

 Never send sensitive data in the query string of an HTTP PATCH request

HTTP DELETE REQUEST

$.ajax(

 "https://contact-manager.example/contacts/1234",

 dataType: "json",

 type: "DELETE"

);

 An HTTP DELETE request is used to delete a resource.

 The same security precautions that apply to an HTTP POST request should

also apply to a PUT request.

 Never send sensitive data in the query string of an HTTP PUT request.

 Not all web servers and application frameworks will allow for a message

body in an HTTP DELETE. Therefore, it is sometimes possible that

sensitive cannot be securely sent from an HTTP DELETE.

TRANSPORTING SENSITIVE DATA

Never transmit sensitive data over HTTP/S GET

Always use SSL for everything!

 In HTML forms, only submit sensitive data over HTTPS POST

When using AJAX, submit sensitive data only using POST, PUT, and PATCH

Only submit sensitive data only in the HTTPS REQUEST BODY

Never submit sensitive data in the HTTP/S query string

EXAMPLE HTTP RESPONSE

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Cache-Control: no-cache, no-store, must-revalidate

Expires: -1

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Date: Thu, 03 Oct 2014 19:55:36 GMT

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>WOOT HTML5</title>

 </head>

 <body>

 <h1>I LOVE HTML</h1>

 </body>

</html>

HTTP RESPONSE Set-Cookie HEADER

Set-Cookie: NAME=VALUE; expires=EXPIRES;

 path=PATH; domain=DOMAIN;

 secure; httponly;

Name The name of the cookie parameter

Value The parameter value

Expires The date at which to discard the cookie. If absent, the cookie will not be
persistent, and will be discarded when the browser is closed. If "-1", the cookie
will be discarded immediately.

Domain The domain that the cookie applies to

Path The path that the cookie applies to

Secure Indicates that the cookie can only be used over secure HTTPS. USE THIS!

HttpOnly Indicates that the cookie can only be modified and accessed from the server. For
example, JavaScript within the browser application will not be able to access the
cookie. USE THIS FOR SESSION IDs!

WHAT ARE HTTP RESPONSE HEADERS?

 HTTP headers are components of the message header of HTTP

Responses.

 HTTP headers define different aspects of an HTTP transaction.

 HTTP headers are colon-separated name-value pairs in clear-text

string format, terminated by a carriage return (\r) and line feed (\n)

character sequence.

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

HTTP RESPONSE SECURITY
HEADERS SUMMARY

X-Frame-Options

X-Xss-Protection

X-Content-Type-Options

Content Security Policy

Access-Control-Allow-Origin

HTTPS Strict Transport Security

Cache-Control / Pragma

HTTP RESPONSE SECURITY HEADERS

X-Frame-Options Set to "SAMEORIGIN" to allow framing on same domain.
 Set to "DENY" to deny framing at all
 Set to "ALLOWALL" if you want to allow framing for all website

X-XSS-Protection Set to "1; mode=block" to use XSS Auditor and block page if XSS
attack is detected.

 Set to "0;" if you want to switch XSS Auditor off. This is useful if
response contents scripts from request parameters

X-Content-Security-Policy A powerful mechanism for controlling which sites certain content
types can be loaded from

Access-Control-Allow-
Origin

 Used to control which sites are allowed to bypass same origin
policies and send cross-origin requests.

Strict-Transport-Security Used to control if the browser is allowed to only access a site over
a secure connection

Cache-Control Used to control mandatory content caching rules

HTTP RESPONSE HEADER:
X-Frame-Options

Protects you from most classes of
Clickjacking

X-Frame-Options: DENY

X-Frame-Options: SAMEORIGIN

X-Frame-Options: ALLOW FROM
example.com

HTTP RESPONSE HEADER:
X-Xss-Protection

X-Xss-Protection: 0;

Use the browser’s built-in XSS auditor:

X-Xss-Protection: 1; mode=block

Disable the browser’s built-in XSS auditor:

CONTENT SECURITY POLICY

 Move all inline script and style into separate files

 Add the X-Content-Security-Policy response header to
instruct the browser that CSP is in use

 Define a policy for the site regarding loading of content

Anti-XSS W3C standard

http://www.w3.org/TR/CSP/

CSP Support Statistics

http://caniuse.com/#feat=contentsecuritypolicy

CSP Example Usage

http://content-security-policy.com/

OTHER SSL FAILS

Posting passwords or other sensitive data over HTTP

Using weak version of SSL

Using weak ciphers

Terminating SSL early in your infrastructure

Trusting the CA system

HTTP RESPONSE HEADER:
Strict-Transport-Security

Forces your browser to always use HTTPS

Strict-transport-security: max-age=10000000; includeSubdomains

Base case:

Strict-transport-security: max-age=10000000

Do all of your subdomains support SSL?

DISABLING THE BROWSER CACHE

Add the following as part of your HTTP Response:

Cache-Control: no-store, no-cache, must-revalidate

Expires: -1

APPLY ALL THE HEADERS!

strict-transport-security: max-age=631138519\r\n

version: HTTP/1.1\r\n

x-frame-options: SAMEORIGIN\r\n

x-gitsha: d814fdf74482e7b82c1d9f0344a59dd1d6a700a6\r\n

x-rack-cache: miss\r\n

x-request-id: 746d48ca76dc0766ac24e74fa905be11\r\n

x-runtime: 0.023473\r\n

x-ua-compatible: IE=Edge,chrome=1\r\n

x-webkit-csp-report-only: default-src 'none'; script-src 'self'; connect-src 'self';

img-src 'self'; style-src 'self’\r\n

content-security-policy-report-only: default-src 'none'; script-src 'self';

connect-src 'self'; img-src 'self'; style-src 'self’\r\n

x-content-security-policy-report-only: default-src 'none'; script-src 'self';

connect-src 'self'; img-src 'self'; style-src 'self’\r\n

ASVS 2 HTTP REQUIREMENTS:
EASY

V11.2 Verify that the application accepts only a defined set of HTTP request
methods, such as GET and POST and unused methods are explicitly
blocked.

V11.3 Verify that every HTTP response contains a content type header
specifying a safe character set (e.g., UTF-8).

V11.8 Verify that HTTP headers and / or other mechanisms for older
browsers have been included to protect against clickjacking attacks.

ASVS 2 HTTP REQUIREMENTS:
INTERMEDIATE

V11.6 Verify that HTTP headers in both requests and responses contain only
printable ASCII characters.

V11.9

Verify that HTTP headers added by a frontend (such as X-Real-IP), and
used by the application, cannot be spoofed by the end user.

V11.10 Verify that the HTTP header, X-Frame-Options is in use for sites where
content should not be viewed in a 3rd-party X-Frame. A common
middle ground is to send SAMEORIGIN, meaning only websites of the
same origin may frame it.

V11.12 Verify that the HTTP headers do not expose detailed version
information of system components.

HTTP Basics

HTTP Request Methods

HTTP Security Response Headers

Sensitive Data In Transit

Intercepting Proxy

Don’t Trust The HTTP Request!

SUMMARY

