Introduction to Application Security

Where are we going?

Web Security and HTTP Basics	What is Web Application Security?
	HTTP GET/POST
	HTTP Security Response Headers
	Sensitive data in transit
	stuff
	More stuff

Today's State: "Our Website Is Safe"

We Have Firewalls and IPS in Place Port 80 & 443 are open for the right reasons

We Outsource

We Use Network Vulnerability Scanners

Neglect the security of the software on the network/web server

We Audit It Once a Quarter with Pen Testers

Applications are constantly changing

We Use SSL Encryption

Only protects data between site and user not the web application itself

Asymmetric Arms Race

A traditional end of cycle / Annual pentest only gives minimal security.....

• There are too many variables and too little time to ensure "real security".

Anconvenient **Code Flaws**

Two weeks of ethical hacking

Ten man-years of development

An Attacker has 24x7x365 to Attack

The Defender has 20 man days per year to detect and defend

Who has the edge?

"We need an Onion"

SDL Design review Threat Modeling Code review/SAST Pentesting/DAST

Live/Ongoing

Continuous/Frequent monitoring/Testing Manual Validation Vulnerability management & Priority Dependency Management

We need more than a Penetration test.

You are what you eat

"We can't improve what we can't measure"

Information flooding (Melting a developers brain, White noise and "compliance")

Doing things right != Doing the right things

"Not all bugs/vulnerabilities are equal" (is HttpOnly important if there is no XSS?)

Contextualize Risk (is XSS /SQLi always High Risk?)

Do developers need to fix everything?

- Limited time
- Finite Resources
- Task Priority
- Pass internal audit?

White Noise

Ideal world

Real world

Application Vulnerabilities Overview

- Application security vulnerabilities can be roughly broken down into 4 categories.
- Application <u>Infrastructure</u>
 - Application infrastructure misconfigured
 - Data passed between browser and server not secured
- Application Controller/Server Tier not coded Securely
 - Broken Authentication and Session Management
 - Business object references (identifiers) not properly secured
 - Failure to Restrict URLs Properly
 - Unvalidated Redirects and Forwards
- Vulnerabilities at the **Browser Level**
 - Unvalidated data becomes a script executed on the browser
 - Logged in user's session is able to be forged
- Vulnerabilities at the **Persistence Tier**
 - Database access not properly written to use SQL securely
 - Data not stored in a cryptographically secure way

Developer Security?

- Developers rarely get application security training in school
- The protocols we use for web development are insecure
- The languages we use for web development are insecure
- The frameworks we use for web development are insecure
- Developers rarely get prescriptive security requirements at work
- Developers rarely get good assessment technology to verify if they are writing secure code and applications

Recipe for Disaster!

Secure Application Design Principles

Practice least privilege	Applications should execute with the <i>Least Privilege</i> required to perform a job
Employ secure defaults	Choose appropriate features for users and ensure that these features are secure
Validate data from all sources	Always assume that data from any source is malicious and validate it before use
Fail to a secure mode	Design applications to fail to a secure state and never disclose confidential data or provide elevated privledges
Prevent information leakage	An unintentional revelation of information about the way an application works
Practice defense in depth	Use multiple layers of security instead of a single mechanism
Secure the weakest link	Secure your application to prevent it from being the "weakest" link
Escape/Encode	Convert data that is used by parsers into non-executing context

Web application security risks

Blurring traditional boundaries	Organizations are exposing internal data and critical functionality to the public Internet through web application deployments
Data privacy	Weak security controls may be exploited by skilled attackers to access sensitive information or perform unauthorized activities on your organizations' systems
Impact of a security breach	Loss of customer confidence and reputational damage via the negative publicity associated with a security breach

Web Application Security

COMMON VULNERABILITIES HACKERS EXPLOIT

- 1. Injection
- 2. Cross-site scripting
- 3. Broken authentication/session management
- 4. Insecure direct object references
- 5. Cross site request forgery
- 6. Security misconfiguration
- 7. Insecure cryptographic storage
- 8. Failure to restrict URL access
- 9. Insufficient transport layer security
- 10. Un-validated redirects and forwards

NEW Challenges

THE NEW PERIMETER

THE NETWORK IS NO LONGER THE POINT OF CONTROL

PEOPLE

Employees, Contractors Costumers & Partners

DATA

Unstructured & Structured

DEVICES

Phones, Servers, Laptops, Tablets

HE WHO DEFENDS EVERYTHING DEFENDS NOTHING

- The network has become the battlefield
- Forcing defense of the entire network
- Low situational awareness on the network
 - Who, What, When, Why?
- Low awareness increases vulnerability

ASSURANCE IS PART OF THE SOLUTION

CRITICAL PATCH UPDATES

API Security?

Identity and Access Management

RECOMMENDATIONS DON'T SECURE YOURSELF OUT OF BUSINESS

- You can't defend everything
- Assume you are already breached
- Protect your most valuable assets
- Have a plan and execute the plan

US Interstate Highway System Initial cost vs. maintenance cost

http://cdmsmith.com/en-US/Insights/Funding-Future-Mobility/Exit-6-Aging-Interstates.aspx

Interstate-related expenditures during the next 50 years will likely reach \$2.5 trillion. The interstate system is anything but "paid for"

- http:/cdmsmith.com

Gratuitous slide to distract you so you can blame your insecure code on me

Baseball + Bat = \$1.10 How much is the Bat if it costs \$1.00 more than the ball?

